Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
We conducted a cross-ecoregion study to test the hypothesis that N-fixation and denitrification would co-occur in streams and rivers across a range of reactive N concentrations. Between 2017 and 2019, we sampled 30 streams in 13 ecoregions, using chambers to quantify N-fixation using acetylene reduction and denitrification using acetylene block. 25 of the study streams were part of the National Ecological Observatory Network or the StreamPULSE network, which provided data on water temperature, light, nutrients, discharge and metabolism. Although N-fixation and denitrification occur under contrasting environmental conditions, we found that they co-occurred in ca. 40% of stream ecosystems surveyed, and microbes capable of carrying out each process were found in all surveyed streams. This dataset includes the chamber data used to calculate nitrogen fixation and denitrification rates, stream substrate information used to scale rates from substrate to whole-reach scale, and a variety of reach-to-landscape scale covariates used to evaluate predictors of rates across the study streams.more » « less
-
Great Lakes coastlines are mosaics of wetland, stream, and lake habitats, characterized by a high degree of spatial heterogeneity that may facilitate the co-occurrence of seemingly incompatible biogeochemical processes due to variation in environmental factors that favor each process. We measured nutrient limitation and rates of N2 fixation and denitrification along transects in 5 wetland - stream - lake ecotones with different nutrient loading in Lakes Superior and Huron and hypothesized that rates of both processes would be related to nutrient limitation status, habitat type, and environmental characteristics including temperature, nutrient concentrations, and organic matter quality. This data package includes information on sampling sites, dates and locations; rates of N fixation and denitrification measured at each site, date and transect location; and biomass information from nutrient diffusing substrates deployed on the study transects.more » « less
-
We hypothesized that environmental variation at the patch scale (1 - 10’s m) would facilitate the co-occurrence of N2 fixation and denitrification through the formation of hot spots in streams. We measured rates of N2 fixation and denitrification and relative abundances of the genes nifH and nirS in patches determined by channel geomorphic units and substrate type in 4 Idaho and 3 Michigan streams encompassing a gradient of N and P concentrations. This data package includes patch-level measurements of N2 fixation and denitrification rates, relative gene abundances of nifH and nirS, and environmental covariates (nutrient concentrations, water temperature, surface and subsurface dissolved oxygen concentrations, organic matter content) that were used to explore the factors that could predict process rates and relative gene abundances across patches and streams.more » « less
An official website of the United States government
